Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning discriminative spatial representation for image classification

Spatial Pyramid Representation (SPR) [7] introduces spatial layout information to the orderless bag-of-features (BoF) representation. SPR has become the standard and has been shown to perform competitively against more complex methods for incorporating spatial layout. In SPR the image is divided into regular grids. However, the grids are taken as uniform spatial partitions without any theoretic...

متن کامل

Learning a Discriminative Model for Image Annotation

This paper introduces a new discriminative model for image annotation. To learn the discriminative model, our method divides each training image into patches, and embeds the patches into a hypergraph, so as to find the representative instances (also called exemplars) for every single class by solving the graph. Then, the feature differences between the training samples and the exemplars are use...

متن کامل

Self-supervised learning based on discriminative nonlinear features for image classification

It is often tedious and expensive to label large training datasets for learning-based image classification. This problem can be alleviated by self-supervised learning techniques, which take a hybrid of labeled and unlabeled data to train classifiers. However, the feature dimension is usually very high (typically from tens to several hundreds). The learning is afflicted by the curse of dimension...

متن کامل

Learning Discriminative Multilevel Structured Dictionaries for Supervised Image Classification

Sparse representations using overcomplete dictionaries have proved to be a powerful tool in many signal processing applications such as denoising, super-resolution, inpainting, compression or classification. The sparsity of the representation very much depends on how well the dictionary is adapted to the data at hand. In this paper, we propose a method for learning structured multilevel diction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Image Processing

سال: 2017

ISSN: 1057-7149,1941-0042

DOI: 10.1109/tip.2017.2700761